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Photons and Matter Waves

What Is Physics?
One primary focus of physics is Einstein’s theory of relativity, which took us into
a world far beyond that of ordinary experience—the world of objects moving at
speeds close to the speed of light. Among other surprises, Einstein’s theory pre-
dicts that the rate at which a clock runs depends on how fast the clock is moving
relative to the observer: the faster the motion, the slower the clock rate. This and
other predictions of the theory have passed every experimental test devised thus
far, and relativity theory has led us to a deeper and more satisfying view of the
nature of space and time.

Now you are about to explore a second world that is outside ordinary
experience—the subatomic world. You will encounter a new set of surprises that,
though they may sometimes seem bizarre, have led physicists step by step to a
deeper view of reality.

Quantum physics, as our new subject is called, answers such questions as:
Why do the stars shine? Why do the elements exhibit the order that is so appar-
ent in the periodic table? How do transistors and other microelectronic devices
work? Why does copper conduct electricity but glass does not? In fact, scientists
and engineers have applied quantum physics in almost every aspect of everyday
life, from medical instrumentation to transportation systems to entertainment in-
dustries. Indeed, because quantum physics accounts for all of chemistry, including
biochemistry, we need to understand it if we are to understand life itself.

Some of the predictions of quantum physics seem strange even to the phys-
icists and philosophers who study its foundations. Still, experiment after
experiment has proved the theory correct, and many have exposed even stranger
aspects of the theory.The quantum world is an amusement park full of wonderful
rides that are guaranteed to shake up the commonsense world view you have
developed since childhood. We begin our exploration of that quantum park with
the photon.

38-1 THE PHOTON, THE QUANTUM OF LIGHT

After reading this module, you should be able to . . .

38.01 Explain the absorption and emission of light in terms
of quantized energy and photons. 

38.02 For photon absorption and emission, apply the 

relationships between energy, power, intensity, rate of
photons, the Planck constant, the associated frequency,
and the associated wavelength.

● An electromagnetic wave (light) is quantized (allowed
only in certain quantities), and the quanta are called 
photons.

● For light of frequency f and wavelength l, the photon energy is
E hf,

where h is the Planck constant.

Learning Objectives

Key Ideas



The Photon, the Quantum of Light
Quantum physics (which is also known as quantum mechanics and quantum
theory) is largely the study of the microscopic world. In that world, many quanti-
ties are found only in certain minimum (elementary) amounts, or integer multi-
ples of those elementary amounts; these quantities are then said to be quantized.
The elementary amount that is associated with such a quantity is called the
quantum of that quantity (quanta is the plural).

In a loose sense, U.S. currency is quantized because the coin of least value is the
penny, or $0.01 coin,and the values of all other coins and bills are restricted to inte-
ger multiples of that least amount. In other words, the currency quantum is $0.01,
and all greater amounts of currency are of the form n($0.01), where n is always a
positive integer. For example, you cannot hand someone $0.755  75.5($0.01).

In 1905, Einstein proposed that electromagnetic radiation (or simply light) is
quantized and exists in elementary amounts (quanta) that we now call photons.
This proposal should seem strange to you because we have just spent several
chapters discussing the classical idea that light is a sinusoidal wave, with a
wavelength l, a frequency f, and a speed c such that

(38-1)

Furthermore, in Chapter 33 we discussed the classical light wave as being an
interdependent combination of electric and magnetic fields, each oscillating at
frequency f. How can this wave of oscillating fields consist of an elementary
amount of something—the light quantum? What is a photon?

The concept of a light quantum, or a photon, turns out to be far more subtle
and mysterious than Einstein imagined. Indeed, it is still very poorly understood.
In this book, we shall discuss only some of the basic aspects of the photon
concept, somewhat along the lines of Einstein’s proposal. According to that pro-
posal, the quantum of a light wave of frequency f has the energy

E hf (photon energy). (38-2)

Here h is the Planck constant, the constant we first met in Eq. 32-23, and which
has the value

h 6.63 10 34 J s 4.14 10 15 eV s. (38-3)

The smallest amount of energy a light wave of frequency f can have is hf, the
energy of a single photon. If the wave has more energy, its total energy must be
an integer multiple of hf. The light cannot have an energy of, say, 0.6hf or 75.5hf.

Einstein further proposed that when light is absorbed or emitted by an object
(matter), the absorption or emission event occurs in the atoms of the object. When
light of frequency f is absorbed by an atom, the energy hf of one photon is trans-
ferred from the light to the atom. In this absorption event, the photon vanishes and
the atom is said to absorb it. When light of frequency f is emitted by an atom, an
amount of energy hf is transferred from the atom to the light. In this emission
event, a photon suddenly appears and the atom is said to emit it. Thus, we can have
photon absorption and photon emission by atoms in an object.

For an object consisting of many atoms, there can be many photon absorp-
tions (such as with sunglasses) or photon emissions (such as with lamps).
However, each absorption or emission event still involves the transfer of an
amount of energy equal to that of a single photon of the light.

When we discussed the absorption or emission of light in previous chapters,
our examples involved so much light that we had no need of quantum physics,
and we got by with classical physics. However, in the late 20th century, technology
became advanced enough that single-photon experiments could be conducted
and put to practical use. Since then quantum physics has become part of standard
engineering practice, especially in optical engineering.
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Checkpoint 1
Rank the following radiations according to their associated photon energies, greatest
first: (a) yellow light from a sodium vapor lamp, (b) a gamma ray emitted by a
radioactive nucleus, (c) a radio wave emitted by the antenna of a commercial radio
station, (d) a microwave beam emitted by airport traffic control radar.

Next, into this we can substitute from Eq. 38-2 (E hf),
Einstein’s proposal about the energy E of each quantum of
light (which we here call a photon in modern language). We
can then write the absorption rate as 

Using Eq. 38-1 ( f c/l) to substitute for f and then enter-
ing known data, we obtain

(Answer)2.97 10 20 photons/s.

(100 W)(590 10 9 m)
(6.63 10 34 J s)(2.998 10 8 m/s)

R
Pemitl

hc

R Remit
Pemit

hf
.

Sample Problem 38.01 Emission and absorption of light as photons

A sodium vapor lamp is placed at the center of a large
sphere that absorbs all the light reaching it. The rate at
which the lamp emits energy is 100 W; assume that the
emission is entirely at a wavelength of 590 nm. At what rate
are photons absorbed by the sphere?

KEY IDEAS

The light is emitted and absorbed as photons. We assume
that all the light emitted by the lamp reaches (and thus is
absorbed by) the sphere. So, the rate R at which photons are
absorbed by the sphere is equal to the rate Remit at which
photons are emitted by the lamp.

Calculations: That rate is

Remit
rate of energy emission

energy per emitted photon
Pemit

E
.

Additional examples, video, and practice available at WileyPLUS

38-2 THE PHOTOELECTRIC EFFECT

After reading this module, you should be able to . . .

38.03 Make a simple and basic sketch of a photoelectric
experiment, showing the incident light, the metal plate, the
emitted electrons (photoelectrons), and the collector cup.

38.04 Explain the problems physicists had with the photo-
electric effect prior to Einstein and the historical impor-
tance of Einstein’s explanation of the effect.

38.05 Identify a stopping potential Vstop and relate it to the
maximum kinetic energy Kmax of escaping photoelectrons.

38.06 For a photoelectric setup, apply the relationships be-
tween the frequency and wavelength of the incident light,
the maximum kinetic energy Kmax of the photoelectrons,
the work function , and the stopping potential Vstop.

38.07 For a photoelectric setup, sketch a graph of the stop-
ping potential Vstop versus the frequency of the light, identi-
fying the cutoff frequency f0 and relating the slope to the
Planck constant h and the elementary charge e.

Learning Objectives

●When light of high enough frequency illuminates a metal
surface, electrons can gain enough energy to escape the
metal by absorbing photons in the illumination, in what is
called the photoelectric effect.

● The conservation of energy in such an absorption and
escape is written as

hf Kmax ,

where hf is the energy of the absorbed photon, Kmax is the
kinetic energy of the most energetic of the escaping elec-
trons, and (called the work function) is the least energy
required by an electron to escape the electric forces holding
electrons in the metal.
● If hf , electrons barely escape but have no kinetic
energy and the frequency is called the cutoff frequency f0.
● If hf , electrons cannot escape.

Key Ideas



The Photoelectric Effect
If you direct a beam of light of short enough wavelength onto a clean metal
surface, the light will cause electrons to leave that surface (the light will eject the
electrons from the surface). This photoelectric effect is used in many devices,
including camcorders. Einstein’s photon concept can explain it.

Let us analyze two basic photoelectric experiments, each using the apparatus
of Fig. 38-1, in which light of frequency f is directed onto target T and ejects
electrons from it. A potential difference V is maintained between target T and
collector cup C to sweep up these electrons, said to be photoelectrons. This col-
lection produces a photoelectric current i that is measured with meter A.

First Photoelectric Experiment
We adjust the potential difference V by moving the sliding contact in Fig. 38-1 so
that collector C is slightly negative with respect to target T. This potential dif-
ference acts to slow down the ejected electrons. We then vary V until it reaches
a certain value, called the stopping potential Vstop, at which point the reading of
meter A has just dropped to zero. When V Vstop, the most energetic ejected
electrons are turned back just before reaching the collector. Then Kmax, the
kinetic energy of these most energetic electrons, is

Kmax eVstop, (38-4)

where e is the elementary charge.
Measurements show that for light of a given frequency, Kmax does not depend

on the intensity of the light source. Whether the source is dazzling bright or so
feeble that you can scarcely detect it (or has some intermediate brightness), the
maximum kinetic energy of the ejected electrons always has the same value.

This experimental result is a puzzle for classical physics. Classically, the in-
cident light is a sinusoidally oscillating electromagnetic wave. An electron in
the target should oscillate sinusoidally due to the oscillating electric force on it
from the wave’s electric field. If the amplitude of the electron’s oscillation is
great enough, the electron should break free of the target’s surface— that is, be
ejected from the target. Thus, if we increase the amplitude of the wave and its
oscillating electric field, the electron should get a more energetic “kick” as it is
being ejected. However, that is not what happens. For a given frequency, intense
light beams and feeble light beams give exactly the same maximum kick to
ejected electrons.

The actual result follows naturally if we think in terms of photons. Now the
energy that can be transferred from the incident light to an electron in the target
is that of a single photon. Increasing the light intensity increases the number of
photons in the light, but the photon energy, given by Eq. 38-2 (E hf ), is
unchanged because the frequency is unchanged. Thus, the energy transferred to
the kinetic energy of an electron is also unchanged.

Second Photoelectric Experiment
Now we vary the frequency f of the incident light and measure the associated
stopping potential Vstop. Figure 38-2 is a plot of Vstop versus f . Note that the photo-
electric effect does not occur if the frequency is below a certain cutoff frequency
f0 or, equivalently, if the wavelength is greater than the corresponding cutoff
wavelength l0 c/f0.This is so no matter how intense the incident light is.

This is another puzzle for classical physics. If you view light as an electro-
magnetic wave, you must expect that no matter how low the frequency, electrons
can always be ejected by light if you supply them with enough energy— that is,
if you use a light source that is bright enough. That is not what happens. For light
below the cutoff frequency f0, the photoelectric effect does not occur, no matter
how bright the light source.
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Figure 38-1 An apparatus used to study the
photoelectric effect. The incident light
shines on target T, ejecting electrons, which
are collected by collector cup C.The elec-
trons move in the circuit in a direction op-
posite the conventional current arrows.The
batteries and the variable resistor are used
to produce and adjust the electric potential
difference between T and C.



The existence of a cutoff frequency is, however, just what we should expect
if the energy is transferred via photons. The electrons within the target are held
there by electric forces. (If they weren’t, they would drip out of the target due to
the gravitational force on them.) To just escape from the target, an electron must
pick up a certain minimum energy , where is a property of the target material
called its work function. If the energy hf transferred to an electron by a photon
exceeds the work function of the material (if hf ), the electron can escape
the target. If the energy transferred does not exceed the work function (that is,
if hf ), the electron cannot escape.This is what Fig. 38-2 shows.

The Photoelectric Equation
Einstein summed up the results of such photoelectric experiments in the equation

hf Kmax (photoelectric equation). (38-5)

This is a statement of the conservation of energy for a single photon absorption by a
target with work function . Energy equal to the photon’s energy hf is transferred to
a single electron in the material of the target. If the electron is to escape from the
target, it must pick up energy at least equal to . Any additional energy (hf )
that the electron acquires from the photon appears as kinetic energy K of the elec-
tron. In the most favorable circumstance, the electron can escape through the sur-
face without losing any of this kinetic energy in the process; it then appears outside
the target with the maximum possible kinetic energy Kmax.

Let us rewrite Eq. 38-5 by substituting for Kmax from Eq. 38-4 (Kmax eVstop).
After a little rearranging we get

(38-6)

The ratios h/e and /e are constants, and so we would expect a plot of the mea-
sured stopping potential Vstop versus the frequency f of the light to be a straight
line, as it is in Fig. 38-2. Further, the slope of that straight line should be h/e. As a
check, we measure ab and bc in Fig. 38-2 and write

4.1 10 15 V s.

h
e

ab
bc

2.35 V 0.72 V
(11.2 1014 7.2 1014) Hz

Vstop
h
e

f
e

.
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dent light for a sodium target
T in the apparatus of Fig. 38-
1. (Data reported by R. A.
Millikan in 1916.)



Multiplying this result by the elementary charge e, we find

h (4.1 10 15 V s)(1.6 10 19 C) 6.6 10 34 J s,

which agrees with values measured by many other methods.
An aside: An explanation of the photoelectric effect certainly requires quan-

tum physics. For many years, Einstein’s explanation was also a compelling argu-
ment for the existence of photons. However, in 1969 an alternative explanation
for the effect was found that used quantum physics but did not need the concept
of photons. As shown in countless other experiments, light is in fact quantized as
photons, but Einstein’s explanation of the photoelectric effect is not the best ar-
gument for that fact.
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Checkpoint 2
The figure shows data like those of Fig. 38-2 for targets of cesium,
potassium,sodium, and lithium.The plots are parallel. (a) Rank the targets
according to their work functions, greatest first. (b) Rank the plots accord-
ing to the value of h they yield, greatest first.

V s
to

p

Ces
iu

m

Pot
as

siu
m

Lith
iu

m

So
di

um

5.0 5.2 5.4 5.6 5.8 6.0 6.2
f (1014 Hz)

Calculations: From that last idea, Eq. 38-5 then gives us, with
f f0,

hf0 0 .

In Fig. 38-2, the cutoff frequency f0 is the frequency at which
the plotted line intercepts the horizontal frequency axis,
about 5.5 1014 Hz. We then have

(Answer)3.6 10 19 J 2.3 eV.

hf0 (6.63 10 34 J s)(5.5 1014 Hz)

Sample Problem 38.02 Photoelectric effect and work function

Find the work function of sodium from Fig. 38-2.

KEY IDEAS

We can find the work function from the cutoff frequency
f0 (which we can measure on the plot). The reasoning is this:
At the cutoff frequency, the kinetic energy Kmax in Eq. 38-5
is zero. Thus, all the energy hf that is transferred from a
photon to an electron goes into the electron’s escape, which
requires an energy of .

Additional examples, video, and practice available at WileyPLUS

38-3 PHOTONS, MOMENTUM, COMPTON SCATTERING, LIGHT INTERFERENCE

After reading this module, you should be able to . . .

38.08 For a photon, apply the relationships between momen-
tum, energy, frequency, and wavelength.

38.09 With sketches, describe the basics of a Compton scat-
tering experiment.

38.10 Identify the historic importance of Compton scattering.
38.11 For an increase in the Compton-scattering angle f,

identify whether these quantities of the scattered x ray
increase or decrease: kinetic energy, momentum,
wavelength.

38.12 For Compton scattering, describe how the conserva-

tions of momentum and kinetic energy lead to the equation
giving the wavelength shift l.

38.13 For Compton scattering, apply the relationships
between the wavelengths of the incident and scattered 
x rays, the wavelength shift l, the angle f of photon
scattering, and the electron’s final energy and momentum
(both magnitude and angle).

38.14 In terms of photons, explain the double-slit experiment
in the standard version, the single-photon version, and the
single-photon, wide-angle version.

Learning Objectives
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● Although it is massless, a photon has momentum, 
which is related to its energy E, frequency f, and
wavelength by

.

● In Compton scattering, x rays scatter as particles (as
photons) from loosely bound electrons in a target.
● In the scattering, an x-ray photon loses energy and
momentum to the target electron.
● The resulting increase (Compton shift) in the photon
wavelength is

p
hf
c

h
l

,

where m is the mass of the target electron and f is the angle
at which the photon is scattered from its initial travel direction.
● Photons: When light interacts with matter, the interaction is
particle-like, occurring at a point and transferring energy and
momentum.
●Wave: When a single photon is emitted by a source, we
interpret its travel as being that of a probability wave.
●Wave: When many photons are emitted or absorbed by
matter, we interpret the combined light as a classical electro-
magnetic wave.

l
h

mc
 (1 cos f)

Key Ideas

Photons Have Momentum
In 1916, Einstein extended his concept of light quanta (photons) by proposing
that a quantum of light has linear momentum. For a photon with energy hf, the
magnitude of that momentum is

(photon momentum), (38-7)

where we have substituted for f from Eq. 38-1 ( f c/l). Thus, when a photon
interacts with matter, energy and momentum are transferred, as if there were
a collision between the photon and matter in the classical sense (as in Chapter 9).

In 1923, Arthur Compton at Washington University in St. Louis showed that
both momentum and energy are transferred via photons. He directed a beam of x
rays of wavelength l onto a target made of carbon, as shown in Fig. 38-3.An x ray
is a form of electromagnetic radiation, at high frequency and thus small wave-
length. Compton measured the wavelengths and intensities of the x rays that
were scattered in various directions from his carbon target.

Figure 38-4 shows his results. Although there is only a single wavelength 
(l 71.1 pm) in the incident x-ray beam, we see that the scattered x rays con-
tain a range of wavelengths with two prominent intensity peaks. One peak is
centered about the incident wavelength l, the other about a wavelength l that
is longer than l by an amount l, which is called the Compton shift. The value
of the Compton shift varies with the angle at which the scattered x rays are de-
tected and is greater for a greater angle.

Figure 38-4 is still another puzzle for classical physics. Classically, the incident
x-ray beam is a sinusoidally oscillating electromagnetic wave. An electron in the

p
hf
c

h

Incident
x rays

Collimating
slits

λ 

  T

Scattered
x raysφ 

λ '

Detector

Figure 38-3 Compton’s apparatus.A beam
of x rays of wavelength l 71.1 pm is
directed onto a carbon target T.The x rays
scattered from the target are observed at
various angles f to the direction of the inci-
dent beam. The detector measures both the
intensity of the scattered x rays and their
wavelength.
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Figure 38-4 Compton’s results for four values of the scattering angle f. Note that the
Compton shift l increases as the scattering angle increases.



carbon target should oscillate sinusoidally due to the oscillating electric force on
it from the wave’s electric field. Further, the electron should oscillate at the same
frequency as the wave and should send out waves at this same frequency, as if it
were a tiny transmitting antenna. Thus, the x rays scattered by the electron should
have the same frequency, and the same wavelength, as the x rays in the incident
beam—but they don’t.

Compton interpreted the scattering of x rays from carbon in terms of energy
and momentum transfers, via photons, between the incident x-ray beam and
loosely bound electrons in the carbon target. Let’s see how this quantum physics
interpretation leads to an understanding of Compton’s results.

Suppose a single photon (of energy E hf ) is associated with the interac-
tion between the incident x-ray beam and a stationary electron. In general, the
direction of travel of the x ray will change (the x ray is scattered), and the elec-
tron will recoil, which means that the electron has obtained some kinetic energy.
Energy is conserved in this isolated interaction. Thus, the energy of the scattered
photon (E hf ) must be less than that of the incident photon. The scattered x
rays must then have a lower frequency f and thus a longer wavelength l than
the incident x rays, just as Compton’s experimental results in Fig. 38-4 show.

For the quantitative part, we first apply the law of conservation of energy.
Figure 38-5 suggests a “collision” between an x ray and an initially stationary free
electron in the target.As a result of the collision, an x ray of wavelength l moves
off at an angle f and the electron moves off at an angle u, as shown. Conservation
of energy then gives us

hf hf K,

in which hf is the energy of the incident x-ray photon, hf is the energy of the
scattered x-ray photon, and K is the kinetic energy of the recoiling electron.
Because the electron may recoil with a speed comparable to that of light, we must
use the relativistic expression of Eq. 37-52,

K mc2(g 1),
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Figure 38-5 (a) An x ray approaches a stationary electron.The x ray can (b) bypass the electron (forward scatter) with
no energy or momentum transfer, (c) scatter at some intermediate angle with an intermediate energy and momentum
transfer, or (d) backscatter with the maximum energy and momentum transfer.
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for the electron’s kinetic energy. Here m is the electron’s mass and g is the
Lorentz factor

Substituting for K in the conservation of energy equation yields

hf hf mc2(g 1).

Substituting c/l for f and c/l for f then leads to the new energy conservation
equation

(38-8)

Next we apply the law of conservation of momentum to the x-ray– electron
collision of Fig. 38-5. From Eq. 38-7 (p h/l), the magnitude of the momentum
of the incident photon is h/l, and that of the scattered photon is h/l . From
Eq. 37-41, the magnitude for the recoiling electron’s momentum is p gmv.
Because we have a two-dimensional situation, we write separate equations for
the conservation of momentum along the x and y axes, obtaining

(x axis) (38-9)

and (y axis). (38-10)

We want to find l ( l l), the Compton shift of the scattered x rays. Of
the five collision variables (l, l , v, f, and u) that appear in Eqs. 38-8, 38-9, and
38-10, we choose to eliminate v and u, which deal only with the recoiling electron.
Carrying out the algebra (it is somewhat complicated) leads to

(Compton shift). (38-11)

Equation 38-11 agrees exactly with Compton’s experimental results.
The quantity h/mc in Eq. 38-11 is a constant called the Compton wavelength.

Its value depends on the mass m of the particle from which the x rays scatter.
Here that particle is a loosely bound electron, and thus we would substitute the
mass of an electron for m to evaluate the Compton wavelength for Compton scat-
tering from an electron.

A Loose End
The peak at the incident wavelength l ( 71.1 pm) in Fig. 38-4 still needs to be ex-
plained. This peak arises not from interactions between x rays and the very loosely
bound electrons in the target but from interactions between x rays and the electrons
that are tightly bound to the carbon atoms making up the target. Effectively, each of
these latter collisions occurs between an incident x ray and an entire carbon atom. If
we substitute for m in Eq. 38-11 the mass of a carbon atom (which is about 22 000
times that of an electron), we see that l becomes about 22 000 times smaller than
the Compton shift for an electron—too small to detect.Thus, the x rays scattered in
these collisions have the same wavelength as the incident x rays and give us the un-
shifted peaks in Fig.38-4.

h
mc

 (1 cos )

0
h
l

 sin f gmv sin u 

h
l

h
l

 cos f gmv cos u 

h
l

h
l

mc(g 1).

g
1

11 (v/c)2
.
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Checkpoint 3
Compare Compton scattering for x rays (l 20 pm) and visible light (l 500 nm) at a
particular angle of scattering. Which has the greater (a) Compton shift, (b) fractional
wavelength shift, (c) fractional energy loss, and (d) energy imparted to the electron?
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KEY IDEA

We need to find the fractional energy loss (let us call it frac) for
photons that scatter from the electrons:

Calculations: From Eq. 38-2 (E hf ), we can substitute
for the initial energy E and the detected energy E of the x
rays in terms of frequencies. Then, from Eq. 38-1 ( f c/l),
we can substitute for those frequencies in terms of the wave-
lengths.We find

Substitution of data yields

(Answer)

Although the Compton shift l is independent of the wave-
length l of the incident x rays (see Eq. 38-11), our result here
tells us that the fractional photon energy loss of the x rays
does depend on l, increasing as the wavelength of the inci-
dent radiation decreases.

frac
2.21 pm

22 pm 2.21 pm
0.091, or 9.1%.

l

l l
.

frac
hf hf

hf
c/l c/l

c/l
l l

l

frac
energy loss

initial energy
E E

E
.

Sample Problem 38.03 Compton scattering of light by electrons

X rays of wavelength l 22 pm (photon energy 56 keV)
are scattered from a carbon target, and the scattered rays
are detected at 85° to the incident beam.

(a) What is the Compton shift of the scattered rays?

KEY IDEA

The Compton shift is the wavelength change of the x rays
due to scattering from loosely bound electrons in a target.
Further, that shift depends on the angle at which the scat-
tered x rays are detected, according to Eq. 38-11. The shift is
zero for forward scattering at angle f 0°, and it is maximum
for backscattering at angle f 180°. Here we have an inter-
mediate situation at angle f 85°.

Calculation: Substituting 85° for that angle and 9.11
10 31 kg for the electron mass (because the scattering is
from electrons) in Eq. 38-11 gives us

(Answer)

(b) What percentage of the initial x-ray photon energy is
transferred to an electron in such scattering?

2.21 10 12 m 2.2 pm.

(6.63 10 34 J s)(1 cos 85 )
(9.11 10 31 kg)(3.00 10 8 m/s)

l
h

mc
 (1 cos f)

Additional examples, video, and practice available at WileyPLUS

Light as a Probability Wave
A fundamental mystery in physics is how light can be a wave (which spreads out
over a region) in classical physics but be emitted and absorbed as photons (which
originate and vanish at points) in quantum physics. The double-slit experiment of
Module 35-2 lies at the heart of this mystery. Let us discuss three versions of it.

The Standard Version
Figure 38-6 is a sketch of the original experiment carried out by Thomas Young in
1801 (see also Fig. 35-8). Light shines on screen B, which contains two narrow
parallel slits.The light waves emerging from the two slits spread out by diffraction
and overlap on screen C where, by interference, they form a pattern of
alternating intensity maxima and minima. In Module 35-2 we took the existence
of these interference fringes as compelling evidence for the wave nature of light.

Let us place a tiny photon detector D at one point in the plane of screen C.
Let the detector be a photoelectric device that clicks when it absorbs a photon.
We would find that the detector produces a series of clicks, randomly spaced
in time, each click signaling the transfer of energy from the light wave to the
screen via a photon absorption. If we moved the detector very slowly up or down
as indicated by the black arrow in Fig. 38-6, we would find that the click rate
increases and decreases, passing through alternate maxima and minima that cor-
respond exactly to the maxima and minima of the interference fringes.

Interference
fringes

Incident
light D

B C

Figure 38-6 Light is directed onto screen B,
which contains two parallel slits. Light
emerging from these slits spreads out by
diffraction. The two diffracted waves over-
lap at screen C and form a pattern of inter-
ference fringes.A small photon detector D
in the plane of screen C generates a sharp
click for each photon that it absorbs.



The point of this thought experiment is as follows. We cannot predict when a
photon will be detected at any particular point on screen C; photons are detected
at individual points at random times. We can, however, predict that the relative
probability that a single photon will be detected at a particular point in a speci-
fied time interval is proportional to the light intensity at that point.

We know from Eq. 33-26 in Module 33-2 that the intensity I of
a light wave at any point is proportional to the square of Em, the amplitude of the
oscillating electric field vector of the wave at that point. Thus,

(I Erms
2 /cm0)
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The probability (per unit time interval) that a photon will be detected in any
small volume centered on a given point in a light wave is proportional to the
square of the amplitude of the wave’s electric field vector at that point.

We now have a probabilistic description of a light wave, hence another way to
view light. It is not only an electromagnetic wave but also a probability wave. That is,
to every point in a light wave we can attach a numerical probability (per unit time
interval) that a photon can be detected in any small volume centered on that point.

The Single-Photon Version
A single-photon version of the double-slit experiment was first carried out by
G. I. Taylor in 1909 and has been repeated many times since. It differs from the
standard version in that the light source in the Taylor experiment is so extremely
feeble that it emits only one photon at a time, at random intervals. Astonishingly,
interference fringes still build up on screen C if the experiment runs long enough
(several months for Taylor’s early experiment).

What explanation can we offer for the result of this single-photon double-slit
experiment? Before we can even consider the result, we are compelled to ask ques-
tions like these: If the photons move through the apparatus one at a time, through
which of the two slits in screen B does a given photon pass? How does a given pho-
ton even “know” that there is another slit present so that interference is a possibil-
ity? Can a single photon somehow pass through both slits and interfere with itself?

Bear in mind that the only thing we can know about photons is when light
interacts with matter —we have no way of detecting them without an interaction
with matter, such as with a detector or a screen.Thus, in the experiment of Fig. 38-6,
all we can know is that photons originate at the light source and vanish at the screen.
Between source and screen, we cannot know what the photon is or does. However,
because an interference pattern eventually builds up on the screen, we can speculate
that each photon travels from source to screen as a wave that fills up the space be-
tween source and screen and then vanishes in a photon absorption at some point on
the screen,with a transfer of energy and momentum to the screen at that point.

We cannot predict where this transfer will occur (where a photon will be
detected) for any given photon originating at the source. However, we can pre-
dict the probability that a transfer will occur at any given point on the screen.
Transfers will tend to occur (and thus photons will tend to be absorbed) in the
regions of the bright fringes in the interference pattern that builds up on
the screen. Transfers will tend not to occur (and thus photons will tend not to be
absorbed) in the regions of the dark fringes in the built-up pattern. Thus, we can
say that the wave traveling from the source to the screen is a probability wave,
which produces a pattern of “probability fringes” on the screen.

The Single-Photon, Wide-Angle Version
In the past, physicists tried to explain the single-photon double-slit experiment in
terms of small packets of classical light waves that are individually sent toward the
slits. They would define these small packets as photons. However, modern
experiments invalidate this explanation and definition. One of these experiments, re-
ported in 1992 by Ming Lai and Jean-Claude Diels of the University of New Mexico,



is depicted in Figure 38-7. Source S contains molecules that emit photons at well-
separated times. Mirrors M1 and M2 are positioned to reflect light that the source
emits along two distinct paths, 1 and 2, that are separated by an angle u, which is
close to 180°. This arrangement differs from the standard two-slit experiment, in
which the angle between the paths of the light reaching two slits is very small.

After reflection from mirrors M1 and M2, the light waves traveling along
paths 1 and 2 meet at beam splitter B, which transmits half the incident light and
reflects the other half. On the right side of B in Fig. 38-7, the light wave traveling
along path 2 and reflected by B combines with the light wave traveling along path
1 and transmitted by B. These two waves then interfere with each other at detec-
tor D (a photomultiplier tube that can detect individual photons).

The output of the detector is a randomly spaced series of electronic pulses,
one for each detected photon. In the experiment, the beam splitter is moved
slowly in a horizontal direction (in the reported experiment, a distance of only
about 50 mm maximum), and the detector output is recorded on a chart recorder.
Moving the beam splitter changes the lengths of paths 1 and 2, producing a phase
shift between the light waves arriving at detector D. Interference maxima and
minima appear in the detector’s output signal.

This experiment is difficult to understand in traditional terms. For example,
when a molecule in the source emits a single photon, does that photon travel
along path 1 or path 2 in Fig. 38-7 (or along any other path)? Or can it move in
both directions at once? To answer, we assume that when a molecule emits a pho-
ton, a probability wave radiates in all directions from it. The experiment samples
this wave in two of those directions, chosen to be nearly opposite each other.

We see that we can interpret all three versions of the double-slit experiment
if we assume that (1) light is generated in the source as photons, (2) light is
absorbed in the detector as photons, and (3) light travels between source and
detector as a probability wave.
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38-4 THE BIRTH OF QUANTUM PHYSICS

After reading this module, you should be able to . . .

38.15 Identify an ideal blackbody radiator and its spectral
radiancy S(l).

38.16 Identify the problem that physicists had with blackbody
radiation prior to Planck’s work, and explain how Planck
and Einstein solved the problem.

38.17 Apply Planck’s radiation law for a given wavelength
and temperature.

38.18 For a narrow wavelength range and for a given wave-
length and temperature, find the intensity in blackbody
radiation.

38.19 Apply the relationship between intensity, power, and area.
38.20 Apply Wien’s law to relate the surface temperature of

an ideal blackbody radiator to the wavelength at which the
spectral radiancy is maximum.

Learning Objectives

● As a measure of the emission of thermal radiation by an
ideal blackbody radiator, we define the spectral radiancy in
terms of the emitted intensity per unit wavelength at a given
wavelength l:

● The Planck radiation law, in which atomic oscillators
produce the thermal radiation, is

S(l)
2pc2h

l5

1
ehc/lkT 1

,

S(l)
intensity

(unit wavelength)
.

where h is the Planck constant, k is the Boltzmann con-
stant, and T is the temperature of the radiating surface (in
kelvins).

● Planck’s law was the first suggestion that the energies 
of the atomic oscillators producing the radiation are
quantized.

●Wien’s law relates the temperature T of a blackbody radia-
tor and the wavelength lmax at which the spectral radiancy is
maximum:

lmaxT 2898 mm ? K.

Key Ideas

Figure 38-7 The light from a single photon
emission in source S travels over two
widely separated paths and interferes with
itself at detector D after being recombined
by beam splitter B.(Based on Ming Lai and
Jean-Claude Diels, Journal of the Optical
Society of America B, 9, 2290– 2294,
December 1992.)

A single molecule

θ 

B

D

M2M1

Path 1 Path 2S

A single photon can take
widely different paths and
still interfere with itself.



The Birth of Quantum Physics
Now that we have seen how the photoelectric effect and Compton
scattering propelled physicists into quantum physics, let’s back up
to the very beginning, when the idea of quantized energies gradu-
ally emerged out of experimental data. The story begins with what
might seem mundane these days but which was a fixation point for
physicists of 1900. The subject was the thermal radiation emitted
by an ideal blackbody radiator—that is, a radiator whose emitted
radiation depends only on its temperature and not on the material
from which it is made, the nature of its surface, or anything other
than temperature. In a nutshell here was the trouble: the
experimental results differed wildly from the theoretical predic-
tions and no one had a clue as to why.

Experimental Setup. We can make an ideal radiator by form-
ing a cavity within a body and keeping the cavity walls at a uniform
temperature.The atoms on the inner wall of the body oscillate (they
have thermal energy), which causes them to emit electromagnetic
waves, the thermal radiation. To sample that internal radiation, we
drill a small hole through the wall so that some of the radiation can
escape to be measured (but not enough to alter the radiation inside
the cavity). We are interested in how the intensity of the radiation
depends on wavelength.

That intensity distribution is handled by defining a spectral
radiancy S(l) of the radiation emitted at given wavelength l:

(38-12)

If we multiply S(l) by a narrow wavelength range dl, we have the intensity (that
is, the power per unit area of the hole in the wall) that is being emitted in the
wavelength range l to l 1 dl.

The solid curve in Fig. 38-8 shows the experimental results for a cavity with a
wall temperature of 2000 K, for a range of wavelengths. Although such a radiator
would glow brightly in a dark room, we can tell from the figure that only a small
part of its radiated energy actually lies in the visible range (which is colorfully
indicated). At that temperature, most of the radiated energy lies in the infrared
region,with longer wavelengths.

Theory. The prediction of classical physics for the spectral radiancy, for a
given temperature T in kelvins, is

(classical radiation law), (38-13)

where k is the Boltzmann constant (Eq. 19-7) with the value

k 1.38  l0 23 J/K 8.62 10 5 eV/K.

This classical result is plotted in Fig. 38-8 for T 2000 K. Although the theoreti-
cal and experimental results agree well at long wavelengths (off the graph to the
right), they are not even close in the short wavelength region. Indeed, the theo-
retical prediction does not even include a maximum as seen in the measured
results and instead “blows up” up to infinity (which was quite disturbing, even
embarrassing, to the physicists).

Planck’s Solution. In 1900, Planck devised a formula for S(l) that neatly
fitted the experimental results for all wavelengths and for all temperatures:

(Planck’s radiation law). (38-14)S(l)
2pc2h

l5

1
ehc/lkT 1

S(l)
2pckT

l4

power
unit area
of emitter

unit
wavelength

.S(l)
intensity

unit
wavelength
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Figure 38-8 The solid curve shows the experimental spectral ra-
diancy for a cavity at 2000 K.Note the failure of the classical
theory, which is shown as a dashed curve.The range of visible
wavelengths is indicated.



The key element in the equation lies in the argument of the exponential: hc/l,
which we can rewrite in a more suggestive form as hf. Equation 38-14 was the
first use of the symbol h, and the appearance of hf suggests that the energies of
the atomic oscillators in the cavity wall are quantized. However, Planck, with his
training in classical physics, simply could not believe such a result in spite of the
immediate success of his equation in fitting all experimental data.

Einstein’s Solution. No one understood Eq. 38-14 for 17 years, but then
Einstein explained it with a very simple model with two key ideas: (1) The ener-
gies of the cavity-wall atoms that are emitting the radiation are indeed quantized.
(2) The energies of the radiation in the cavity are also quantized in the form of
quanta (what we now call photons), each with energy E 5 hf. In his model he ex-
plained the processes by which atoms can emit and absorb photons and how the
atoms can be in equilibrium with the emitted and absorbed light.

Maximum Value. The wavelength lmax at which the S(l) is maximum (for a
given temperature T) can be found by taking the first derivative of Eq. 38-14 with
respect to l, setting the derivative to zero, and then solving for the wavelength.
The result is known as Wien’s law:

lmaxT 2898 mm ? K (at maximum radiancy). (38-15)

For example, in Fig. 38-8 for which T 2000 K, lmax 1.5 mm, which is greater
than the long wavelength end of the visible spectrum and is in the infrared
region, as shown. If we increase the temperature, lmax decreases and the peak in
Fig. 38-8 changes shape and shifts more into the visible range.

Radiated Power. If we integrate Eq. 38-14 over all wavelengths (for a given
temperature), we find the power per unit area of a thermal radiator. If we then
multiply by the total surface area A, we find the total radiated power P. We have
already seen the result in Eq.18-38 (with some changes in notation):

P s AT 4, (38-16)

where s ( 5.6704 3 1028 W/m2 ? K4) is the Stefan–Boltzmann constant and is
the emissivity of the radiating surface ( 1 for an ideal blackbody radiator).
Actually, integrating Eq. 38-14 over all wavelengths is difficult. However, for a
given temperature T, wavelength l, and wavelength range l that is small rela-
tive to l, we can approximate the power in that range by simply evaluating
S(l)A l.
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38-5 ELECTRONS AND MATTER WAVES 

After reading this module, you should be able to . . .

38.21 Identify that electrons (and protons and all other
elementary particles) are matter waves.

38.22 For both relativistic and nonrelativistic particles, apply
the relationships between the de Broglie wavelength,
momentum, speed, and kinetic energy.

38.23 Describe the double-slit interference pattern obtained
with particles such as electrons.

38.24 Apply the optical two-slit equations (Module 35-2) 
and diffraction equations (Module 36-1) to matter
waves.

Learning Objectives

● A moving particle such as an electron can be described as
a matter wave.

● The wavelength associated with the matter wave is the
particle’s de Broglie wavelength l h/p, where p is the
particle’s momentum.

● Particle: When an electron interacts with matter, the inter-
action is particle-like, occurring at a point and transferring
energy and momentum.

●Wave: When an electron is in transit, we interpret it as
being a probability wave.

Key Ideas
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Electrons and Matter Waves
In 1924, French physicist Louis de Broglie made the following appeal to sym-
metry: A beam of light is a wave, but it transfers energy and momentum to matter
only at points, via photons. Why can’t a beam of particles have the same proper-
ties? That is, why can’t we think of a moving electron— or any other particle— as
a matter wave that transfers energy and momentum to other matter at points?

In particular, de Broglie suggested that Eq. 38-7 ( p h/l) might apply not
only to photons but also to electrons. We used that equation in Module 38-3 to
assign a momentum p to a photon of light with wavelength l. We now use it, in
the form

(de Broglie wavelength), (38-17)

to assign a wavelength l to a particle with momentum of magnitude p. The
wavelength calculated from Eq. 38-17 is called the de Broglie wavelength of the
moving particle. De Broglie’s prediction of the existence of matter waves was
first verified experimentally in 1927, by C. J. Davisson and L. H. Germer of the
Bell Telephone Laboratories and by George P. Thomson of the University of
Aberdeen in Scotland.

Figure 38-9 shows photographic proof of matter waves in a more recent
experiment. In the experiment, an interference pattern was built up when

l
h
p

(a) (b)

(c)

(e)

(d)

Central Research Laboratory, Hitachi, Ltd., Kokubinju, Tokyo; 
H. Ezawa, Department of Physics, Gakushuin University, 
Mejiro, Tokyo

Figure 38-9 Photographs showing the buildup of an inter-
ference pattern by a beam of electrons in a two-slit in-
terference experiment like that of Fig. 38-6. Matter
waves, like light waves, are probability waves. The ap-
proximate numbers of electrons involved are (a) 7, (b)
100, (c) 3000, (d) 20 000, and (e) 70 000.
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Figure 38-10 (a) An experimental arrangement used to
demonstrate, by diffraction techniques, the wave-like
character of the incident beam. Photographs of the diffrac-
tion patterns when the incident beam is (b) an x-ray beam
(light wave) and (c) an electron beam (matter wave).
Note that the two patterns are geometrically identical to
each other.

electrons were sent, one by one, through a double-slit apparatus.
The apparatus was like the ones we have previously used to demon-
strate optical interference, except that the viewing screen was similar
to an old-fashioned television screen. When an electron hit the
screen, it caused a flash of light whose position was recorded.

The first several electrons (top two photos) revealed nothing
interesting and seemingly hit the screen at random points.
However, after many thousands of electrons were sent through the
apparatus, a pattern appeared on the screen, revealing fringes
where many electrons had hit the screen and fringes where few
had hit the screen. The pattern is exactly what we would expect for
wave interference. Thus, each electron passed through the appara-
tus as a matter wave —the portion of the matter wave that trav-
eled through one slit interfered with the portion that traveled
through the other slit.That interference then determined the prob-
ability that the electron would materialize at a given point on the
screen, hitting the screen there. Many electrons materialized in re-
gions corresponding to bright fringes in optical interference, and
few electrons materialized in regions corresponding to dark
fringes.

Similar interference has been demonstrated with protons,
neutrons, and various atoms. In 1994, it was demonstrated with
iodine molecules I2, which are not only 500 000 times more mas-
sive than electrons but far more complex. In 1999, it was demon-
strated with the even more complex fullerenes (or buckyballs) C60

and C70. (Fullerenes are molecules of carbon atoms that are
arranged in a structure resembling a soccer ball, 60 carbon atoms
in C60 and 70 carbon atoms in C70.) Apparently, such small objects
as electrons, protons, atoms, and molecules travel as matter waves.
However, as we consider larger and more complex objects, there
must come a point at which we are no longer justified in consider-
ing the wave nature of an object. At that point, we are back in our
familiar nonquantum world, with the physics of earlier chapters of
this book. In short, an electron is a matter wave and can undergo
interference with itself, but a cat is not a matter wave and cannot
undergo interference with itself (which must be a relief to cats).

The wave nature of particles and atoms is now taken for
granted in many scientific and engineering fields. For example,
electron diffraction and neutron diffraction are used to study the
atomic structures of solids and liquids, and electron diffraction is
used to study the atomic features of surfaces on solids.

Figure 38-10a shows an arrangement that can be used to
demonstrate the scattering of either x rays or electrons by crystals.
A beam of one or the other is directed onto a target consisting of a
layer of tiny aluminum crystals. The x rays have a certain wave-
length l. The electrons are given enough energy so that their de
Broglie wavelength is the same wavelength l. The scatter of x rays
or electrons by the crystals produces a circular interference pat-
tern on a photographic film. Figure 38-10b shows the pattern for
the scatter of x rays, and Fig. 38-10c shows the pattern for the scat-
ter of electrons. The patterns are the same —both x rays and elec-
trons are waves.

Waves and Particles
Figures 38-9 and 38-10 are convincing evidence of the wave nature
of matter, but we have countless experiments that suggest its parti-

Incident beam
(x rays or electrons)

Target
(aluminum

crystals)

Circular
diffraction
ring

Photographic
film

(a)

(b)

(c)

Parts (b) and (c) from PSSC film “Matter Waves,” courtesy Education 
Development Center, Newton, Massachusetts



cle nature. Figure 38-11, for example, shows the tracks of particles (rather than
waves) revealed in a bubble chamber. When a charged particle passes through
the liquid hydrogen that fills such a chamber, the particle causes the liquid to va-
porize along the particle’s path. A series of bubbles thus marks the path, which is
usually curved due to a magnetic field set up perpendicular to the plane of the
chamber.

In Fig. 38-11, a gamma ray left no track when it entered at the top because
the ray is electrically neutral and thus caused no vapor bubbles as it passed
through the liquid hydrogen. However, it collided with one of the hydrogen
atoms, kicking an electron out of that atom; the curved path taken by the electron
to the bottom of the photograph has been color coded green. Simultaneous with
the collision, the gamma ray transformed into an electron and a positron in a pair
production event (see Eq. 21-15).Those two particles then moved in tight spirals
(color coded green for the electron and red for the positron) as they gradually
lost energy in repeated collisions with hydrogen atoms. Surely these tracks are
evidence of the particle nature of the electron and positron, but is there any evi-
dence of waves in Fig. 38-11?

To simplify the situation, let us turn off the magnetic field so that the strings of
bubbles will be straight.We can view each bubble as a detection point for the electron.
Matter waves traveling between detection points such as I and F in Fig. 38-12 will
explore all possible paths,a few of which are shown.

In general, for every path connecting I and F (except the straight-line path),
there will be a neighboring path such that matter waves following the two paths
cancel each other by interference. For the straight-line path joining I and F, mat-
ter waves traversing all neighboring paths reinforce the wave following the direct
path. You can think of the bubbles that form the track as a series of detection
points at which the matter wave undergoes constructive interference.
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Lawrence Berkeley Laboratory/Science Photo Library/
Photo Researchers, Inc.

Figure 38-11 A bubble-chamber image show-
ing where two electrons (paths color coded
green) and one positron (red) moved after a
gamma ray entered the chamber.

Checkpoint 4
For an electron and a proton that have the same (a) kinetic energy, (b) momentum, or
(c) speed, which particle has the shorter de Broglie wavelength?

momentum equation, finding 

From Eq. 38-17 then

(Answer)

This wavelength associated with the electron is about the
size of a typical atom. If we increase the electron’s kinetic
energy, the wavelength becomes even smaller.

1.12 10 10 m 112 pm.

6.63 10 34 J s
5.91 10 24 kg m/s

h
p

5.91 10 24 kg m/s.

2(2)(9.11 10 31 kg)(120 eV)(1.60 10 19 J/eV)

p 22mK

Sample Problem 38.04 de Broglie wavelength of an electron

What is the de Broglie wavelength of an electron with a
kinetic energy of 120 eV?

KEY IDEAS

(1) We can find the electron’s de Broglie wavelength l
from Eq. 38-17 (l h/p) if we first find the magnitude of
its momentum p. (2) We find p from the given kinetic en-
ergy K of the electron. That kinetic energy is much less
than the rest energy of an electron (0.511 MeV, from
Table 37-3). Thus, we can get by with the classical approxi-
mations for momentum p ( mv) and kinetic energy

.

Calculations: We are given the value of the kinetic energy.
So, in order to use the de Broglie relation, we first solve the
kinetic energy equation for v and then substitute into the

K ( 1
2 mv2)

Additional examples, video, and practice available at WileyPLUS

I F

Figure 38-12 A few of the many paths that
connect two particle detection points I and
F. Only matter waves that follow paths
close to the straight line between these
points interfere constructively. For all other
paths, the waves following any pair of
neighboring paths interfere destructively.



Schrödinger’s Equation
A simple traveling wave of any kind, be it a wave on a string, a sound wave, or a
light wave, is described in terms of some quantity that varies in a wave-like
fashion. For light waves, for example, this quantity is (x, y, z, t), the electric field
component of the wave. Its observed value at any point depends on the location
of that point and on the time at which the observation is made.

What varying quantity should we use to describe a matter wave? We should
expect this quantity, which we call the wave function (x, y, z, t), to be more
complicated than the corresponding quantity for a light wave because a matter
wave, in addition to energy and momentum, transports mass and (often) electric
charge. It turns out that , the uppercase Greek letter psi, usually represents a
function that is complex in the mathematical sense; that is, we can always write its
values in the form a ib, in which a and b are real numbers and i 2 1.

In all the situations you will meet here, the space and time variables can be
grouped separately and can be written in the form

(x, y, z, t) c(x, y, z) e ivt, (38-18)

where v ( 2pf ) is the angular frequency of the matter wave. Note that c, the
lowercase Greek letter psi, represents only the space-dependent part of the
complete, time-dependent wave function . We shall focus on c. Two questions
arise: What is meant by the wave function? How do we find it?

What does the wave function mean? It has to do with the fact that a matter
wave, like a light wave, is a probability wave. Suppose that a matter wave
reaches a particle detector that is small; then the probability that a particle will
be detected in a specified time interval is proportional to |c |2, where |c| is the
absolute value of the wave function at the location of the detector. Although c

E
:
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38-6 SCHRÖDINGER’S EQUATION

After reading this module, you should be able to . . .

38.25 Identify that matter waves are described by
Schrödinger’s equation.

38.26 For a nonrelativistic particle moving along an x axis,
write the Schrödinger equation and its general solution for
the spatial part of the wave function.

38.27 For a nonrelativistic particle, apply the relationships
between angular wave number, energy, potential energy,

kinetic energy, momentum, and de Broglie wavelength.
38.28 Given the spatial solution to the Schrödinger equa-

tion, write the full solution by including the time
dependence.

38.29 Given a complex number, find the complex conjugate.
38.30 Given a wave function, calculate the probability

density.

Learning Objectives

●A matter wave (such as for an electron) is described by a wave
function (x, y, z, t), which can be separated into a space-
dependent part c (x, y, z) and a time-dependent part e ivt, where
v is the angular frequency associated with the wave.
● For a nonrelativistic particle of mass m traveling along an x axis,
with energy E and potential energy U, the space-dependent part
can be found by solving Schrödinger’s equation,

where k is the angular wave number, which is related to the de

d2c

dx2 k2c 0,

Broglie wavelength l, the momentum p, and the kinetic en-
ergy E 2 U by

● A particle does not have a specific location until its location
is actually measured.

● The probability of detecting a particle in a small volume
centered on a given point is proportional to the probability
density of the matter wave at that point.c 2

k
2p

l

2pp
h

2p22m(E U)
h

.

Key Ideas
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The probability of detecting a particle in a small volume centered on a given point
in a matter wave is proportional to the value of |c |2 at that point.

Because c is usually a complex quantity, we find the square of its absolute value
by multiplying c by c*, the complex conjugate of c. (To find c* we replace the
imaginary number i in c with i, wherever it occurs.)

How do we find the wave function? Sound waves and waves on strings are
described by the equations of Newtonian mechanics. Light waves are described
by Maxwell’s equations. Matter waves for nonrelativistic particles are described
by Schrödinger’s equation, advanced in 1926 by Austrian physicist Erwin
Schrödinger.

Many of the situations that we shall discuss involve a particle traveling in the
x direction through a region in which forces acting on the particle cause it to have
a potential energy U(x). In this special case, Schrödinger’s equation reduces to

(38-19)

in which E is the total mechanical energy of the moving particle. (We do not
consider mass energy in this nonrelativistic equation.) We cannot derive
Schrödinger’s equation from more basic principles; it is the basic principle.

We can simplify the expression of Schrödinger’s equation by rewriting the
second term. First, note that E U(x) is the kinetic energy of the particle. Let’s
assume that the potential energy is uniform and constant (it might even be zero).
Because the particle is nonrelativistic, we can write the kinetic energy classically
in terms of speed v and then momentum p, and then we can introduce quantum
theory by using the de Broglie wavelength:

E U  . (38-20)

By putting 2p in both the numerator and denominator of the squared term, we
can rewrite the kinetic energy in terms of the angular wave number k 2p/l:

. (38-21)

Substituting this into Eq. 38-19 leads to

(Schrödinger’s equation, uniform U), (38-22)

where, from Eq. 38-21, the angular wave number is 

(angular wave number). (38-23)

The general solution of Eq. 38-22 is

c (x) Aeikx Be ikx, (38-24)

in which A and B are constants. You can show that this equation is indeed a solu-
tion of Eq. 38-22 by substituting it and its second derivative into that equation
and noting that an identity results.

k
2p22m(E U)

h

d2c

dx2 k2c 0

E U
1

2m
kh
2p

2

h
l

21
2m

p2

2m
1
2

mv2

(Schrödinger’s equation,
one-dimensional motion),

d2c

dx2

8p2m
h2  [E U(x)]c 0

is usually a complex quantity, |c|2 is always both real and positive. It is, then,
|c |2, which we call the probability density, and not c, that has physical meaning.
Speaking loosely, the meaning is this:



Equation 38-24 is the time-independent solution of Schrödinger’s equation.
We can assume it is the spatial part of the wave function at some initial time t 0.
Given values for E and U, we could determine the coefficients A and B to see
how the wave function looks at t 0. Then, if we wanted to see how the wave
function evolves with time, we follow the guide of Eq. 38-18 and multiply 
Eq. 38-24 by the time dependence e ivt:

(x, t) c (x)e ivt (Aeikx Be ikx)e ivt

Aei(kx vt) Be i(kx vt). (38-25)

Here, however, we will not go that far.

Finding the Probability Density |c|2

In Module 16-1 we saw that any function F of the form F(kx vt) represents a
traveling wave. In Chapter 16, the functions were sinusoidal (sines and cosines);
here they are exponentials. If we wanted, we could always switch between the
two forms by using the Euler formula: For a general argument u,

eiu cos u i sin u and e–iu cosu i sin u. (38-26)

The first term on the right in Eq. 38-25 represents a wave traveling in the posi-
tive direction of x, and the second term represents a wave traveling in the negative
direction of x. Let’s evaluate the probability density |c 2| for a particle with only posi-
tive motion. We eliminate the negative motion by setting B to zero, and then the 
solution at t 0 becomes

c (x) Aeikx. (38-27)

To calculate the probability density, we take the square of the absolute value:

|c |2 |Aeikx|2 A2|eikx|2.
Because

|eikx|2 (eikx)(eikx)* eikxe ikx eikx ikx e0 1,

we get
|c |2 A2(1)2 A2.

Now here is the point: For the condition we have set up (uniform potential en-
ergy U, including U 0 for a free particle), the probability density is a constant
(the same value A2) for any point along the x axis, as shown in the plot of Fig.
38-13. That means that if we make a measurement to locate the particle, the loca-
tion could turn out to be at any x value. Thus, we cannot say that the particle is
moving along the axis in a classical way as a car moves along a street. In fact, the
particle does not have a location until we measure it.
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Probability
   (x)2ψ

0
x

density 

Figure 38-13 A plot of the probability
density |c|2 for a particle moving in the
positive x direction with a uniform poten-
tial energy.Since |c |2 has the same constant
value for all values of x, the particle has the
same probability of detection at all points
along its path.

38-7 HEISENBERG’S UNCERTAINTY PRINCIPLE

After reading this module, you should be able to . . .

38.31 Apply the Heisenberg uncertainty principle for, say, an electron moving along the x axis and explain its meaning.

Learning Objective

● The probabilistic nature of quantum physics places an
important limitation on detecting a particle’s position and
momentum. That is, it is not possible to measure the position

and the momentum of a particle simultaneously with
unlimited precision. The uncertainties in the components of

p:r:

these quantities are given by 

z pz .

y py

x px

Key Idea



Heisenberg’s Uncertainty Principle
Our inability to predict the position of a particle with a uniform electric potential
energy, as indicated by Fig. 38-13, is our first example of Heisenberg’s uncertainty
principle, proposed in 1927 by German physicist Werner Heisenberg. It states
that measured values cannot be assigned to the position and the momentum 
of a particle simultaneously with unlimited precision.

In terms of (called “h-bar”), the principle tells us

(Heisenberg’s uncertainty principle). (38-28)

Here x and px represent the intrinsic uncertainties in the measurements of the
x components of and , with parallel meanings for the y and z terms. Even with
the best measuring instruments, each product of a position uncertainty and a mo-
mentum uncertainty in Eq. 38-28 will be greater than , never less.

Here we shall not derive the uncertainty relationships but only apply them.
They are due to the fact that electrons and other particles are matter waves and
that repeated measurements of their positions and momenta involve probabili-
ties, not certainties. In the statistics of such measurements, we can view, say, x
and px as the spread (actually, the standard deviations) in the measurements.

We can also justify them with a physical (though highly simplified) argument:
In earlier chapters we took for granted our ability to detect and measure location
and motion, such as a car moving down a street or a pool ball rolling across a
table. We could locate a moving object by watching it—that is, by intercepting
light scattered by the object. That scattering did not alter the object’s motion. In
quantum physics, however, the act of detection in itself alters the location and
motion. The more precisely we wish to determine the location of, say, an electron
moving along an x axis (by using light or by any other means), the more we alter
the electron’s momentum and thus become less certain of the momentum. That
is, by decreasing x, we necessarily increase px. Vice versa, if we determine the
momentum very precisely (less px), we become less certain of where the elec-
tron will be located (we increase x).

That latter situation is what we found in Fig 38-13.We had an electron with a cer-
tain value of k, which, by the de Broglie relationship,means a certain momentum px.
Thus, px 0. By Eq. 38-28, that means that x . If we then set up an experiment
to detect the electron, it could show up anywhere between x  and x .

You might push back on the argument: Couldn’t we very precisely measure
px and then next very precisely measure x wherever the electron happens to show
up? Doesn’t that mean that we have measured both px and x simultaneously and
very precisely? No, the flaw is that although the first measurement can give us a
precise value for px, the second measurement necessarily alters that value.
Indeed, if the second measurement really does give us a precise value for x, we
then have no idea what the value of px is.

p:r:

z pz

y py

x px

h/2

p:r:
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KEY IDEA

The minimum uncertainty allowed by quantum theory is
given by Heisenberg’s uncertainty principle in Eq. 38-28.
We need only consider components along the x axis be-
cause we have motion only along that axis and want the

Sample Problem 38.05 Uncertainty principle: position and momentum

Assume that an electron is moving along an x axis and that
you measure its speed to be 2.05 106 m/s, which can be
known with a precision of 0.50%. What is the minimum
uncertainty (as allowed by the uncertainty principle in
quantum theory) with which you can simultaneously meas-
ure the position of the electron along the x axis?



Reflection from a Potential Step
Here is a quick taste of what you would see in more advanced quantum physics.
In Fig. 38-14, we send a beam of a great many nonrelativistic electrons, each of to-
tal energy E, along an x axis through a narrow tube. Initially they are in region 1
where their potential energy is U 0, but at x 0 they encounter a region with a
negative electric potential Vb. The transition is called a potential step or potential
energy step. The step is said to have a height Ub, which is the potential energy an
electron will have once it passes through the boundary at x 0, as plotted in
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the uncertainty px in the momentum must be 0.50% of the
momentum:

Then the uncertainty principle gives us

(Answer)

which is about 100 atomic diameters.

1.13 10 8 m 11 nm,

x
px

(6.63 10 34 J s)/2p

9.35 10 27 kg m/s

9.35 10 27 kg m/s.

(0.0050)(1.87 10 24 kg m/s)

px (0.0050)px

uncertainty x in location along that axis. Since we want
the minimum allowed uncertainty, we use the equality
instead of the inequality in the x-axis part of Eq. 38-28,
writing

Calculations: To evaluate the uncertainty px in the momen-
tum, we must first evaluate the momentum component px.
Because the electron’s speed vx is much less than the speed of
light c, we can evaluate px with the classical expression for mo-
mentum instead of using a relativistic expression.We find

The uncertainty in the speed is given as 0.50% of the
measured speed. Because px depends directly on speed,

1.87 10 24 kg m/s.

px mvx (9.11 10 31 kg)(2.05 106 m/s)

x px .

Additional examples, video, and practice available at WileyPLUS

38-8 REFLECTION FROM A POTENTIAL STEP

After reading this module, you should be able to . . .

38.32 Write the general wave function for Schrödinger’s
equation for an electron in a region of constant (including
zero) potential energy.

38.33 With a sketch, identify a potential step for an electron,
indicating the barrier height Ub.

38.34 For electron wave functions in two adjacent regions,
determine the coefficients (probability amplitudes) by
matching values and slopes at the boundary.

38.35 Determine the reflection and transmission coefficients
for electrons incident on a potential step (or potential

energy step), where the incident electrons each have zero
potential energy U 0 and a mechanical energy E greater
than the step height Ub.

38.36 Identify that because electrons are matter waves, they
might reflect from a potential step even when they have
more than enough energy to pass through the step.

38.37 Interpret the reflection and transmission coefficients in
terms of the probability of an electron reflecting or passing
through the boundary and also in terms of the average num-
ber of electrons out of the total number shot at the barrier.

Learning Objectives

● A particle can reflect from a boundary at which its 
potential energy changes even when classically it would not
reflect.

● The reflection coefficient R gives the probability of reflec-
tion of an individual particle at the boundary.

● For a beam of a great many particles, R gives the average
fraction that will undergo reflection.
● The transmission coefficient T that gives the probability of
transmission through the boundary is

T 1 2 R.

Key Ideas

x

x = 0

Vb < 0V = 0

Can the electron be
reflected by the region 
of negative potential?

Figure 38-14 The elements of a tube in which
an electron (the dot) approaches a region
with a negative electric potential Vb.



Fig. 38-15 for potential energy as a function of position x. (Recall that U qV.
Here the potential Vb is negative, the electron’s charge q is negative, and so the
potential energy Ub is positive.)

Let’s consider the situation where E > Ub. Classically, the electrons should all
pass through the boundary—they certainly have enough energy. Indeed, we dis-
cussed such motion extensively in Chapters 22 through 24, where electrons
moved into electric potentials and had changes in potential energy and kinetic
energy. We simply conserved mechanical energy and noted that if the potential
energy increases, the kinetic energy decreases by the same amount, and the speed
thus also decreases.What we took for granted is that, because the electron energy
E is greater than the potential energy Ub, all the electrons pass through the
boundary. However, if we apply Schrödinger’s equation, we find a big surprise—
because electrons are matter waves, not tiny solid (classical) particles, some of
them actually reflect from the boundary. Let’s determine what fraction R of the
incoming electrons reflect.

In region 1, where U is zero, Eq. 38-23 tells us that the angular wave number is

(38-29)

and Eq. 38-24 tells us that the general space-dependent solution to Schrodinger’s
equation is

c1(x) Aeikx Be ikx (region 1). (38-30)

In region 2, where the potential energy is Ub, the angular wave number is

(38-31)

and the general solution, with this angular wave number, is

c2(x) De ik x (region 2). (38-32)

We use coefficients C and D because they are not the same as the coefficients in
region 1.

The terms with positive arguments in an exponential represent particles
moving in the x direction; those with negative arguments represent particles
moving in the x direction. However, because there is no electron source off to
the right in Figs. 38-14 and 38-15, there can be no electrons moving to the left in
region 2. So, we set D 0, and the solution in region 2 is then simply

c2(x) (region 2). (38-33)

Next, we must make sure that our solutions are “well behaved” at the
boundary. That is, they must be consistent with each other at x 0, both in
value and in slope. These conditions are said to be boundary conditions. We first
substitute x 0 into Eqs. 38-30 and 38-33 for the wave functions and then set the
results equal to each other.This gives us our first boundary condition:

A B C (matching of values). (38-34)

The functions have the same value at x 0 provided the coefficients have this
relationship.

Next, we take a derivative of Eq. 38-30 with respect to x and then substitute
in x 0. Then we take a derivative of Eq. 38-33 with respect to x and then substi-
tute in x 0. And then we set the two results equal to each other (one slope
equal to the other slope at x 0).We find

Ak Bk Ckb (matching of slopes). (38-35)

The slopes at x 0 are equal provided that this relationship of coefficients and
angular wave numbers is satisfied.

Ceikbx

bCeikbx

kb
2p22m(E Ub)

h
,

k
2p22mE

h
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x

Ub

0

E

Energy

Classically, the electron has 
too much energy to be 
reflected by the potential step.

Electron

Figure 38-15 An energy diagram containing
two plots for the situation of Fig. 38-14: (1)
The electron’s mechanical energy E is plot-
ted. (2) The electron’s electric potential en-
ergy U is plotted as a function of the elec-
tron’s position x.The nonzero part of the
plot (the potential step) has height Ub.



We want to find the probability that electrons reflect from the barrier. Recall
that probability density is proportional to |c|2. Here let’s relate the probability den-
sity in the reflection (which is proportional to |B|2) to the probability density in the
incident beam (which is proportional to |A|2) by defining a reflection coefficient R:

(38-36)

This R gives the probability of reflection and thus is also the fraction of the in-
coming electrons that reflect. The transmission coefficient (the probability of
transmission) is

T 1 R. (38-37)

For example, suppose R 0.010. Then if we send 10,000 electrons toward the
barrier, we find that about 100 are reflected. However, we could never guess
which 100 would be reflected. We have only the probability. The best we can say
about any one electron is that it has a 1.0% chance of being reflected and a 99%
chance of being transmitted.The wave nature of the electron does not allow us to
be any more precise than that.

To evaluate R for any given values of E and Ub, we first solve Eqs. 38-34 and
38-35 for B in terms of A by eliminating C and then substitute the result into
Eq. 38-36. Finally, using Eqs. 38-29 and 38-31, we substitute values for k and kb.
The surprise is that R is not simply zero (and T is not simply 1) as we assumed
classically in earlier chapters.

R
B 2

A 2 .
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38-9 TUNNELING THROUGH A POTENTIAL BARRIER

After reading this module, you should be able to . . .

38.38 With a sketch, identify a potential barrier for an elec-
tron, indicating the barrier height Ub and thickness L.

38.39 Identify the energy argument about what is classically
required of a particle’s energy if the particle is to pass
through a potential barrier.

38.40 Identify the transmission coefficient for tunneling.
38.41 For tunneling, calculate the transmission coefficient T

in terms of the particle’s energy E and mass m and the
barrier’s height Ub and thickness L.

38.42 Interpret a transmission coefficient in terms of the
probability of any one particle tunneling through a barrier
and also in terms of the average fraction of many particles
tunneling through the barrier.

38.43 In a tunneling setup, describe the probability density in
front of the barrier, within the barrier, and then beyond the
barrier.

38.44 Describe how a scanning tunneling microscope
works.

Learning Objectives

● A potential energy barrier is a region where a traveling parti-
cle will have an increased potential energy Ub.

● The particle can pass through the barrier if its total energy
E Ub.

●Classically, it cannot pass through it if E Ub, but in quan-
tum physics it can, an effect called tunneling.

● For a particle with mass m and a barrier of thickness L, the
transmission coefficient is

T e 2bL,

where .b
A

8p 2m(Ub E)
h2

Key Ideas

Tunneling Through a Potential Barrier
Let’s replace the potential step of Fig. 38-14 with a potential barrier (or potential
energy barrier), which is a region of thickness L (the barrier thickness or length)
where the electric potential is Vb (  0) and the barrier height is Ub ( qV), as
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shown in Fig. 38-16. To the right of the barrier is region 3 with V 0. As before,
we’ll send a beam of nonrelativistic electrons toward the barrier, each with en-
ergy E. If we again consider E Ub, we have a more complicated situation than
our previous potential step because now electrons can possibly reflect from two
boundaries, at x 0 and x L.

Instead of sorting that out, let’s consider the situation where E Ub—that is,
where the mechanical energy is less than the potential energy that would be
demanded of an electron in region 2. Such a demand would require that the
electron’s kinetic energy ( E Ub) be negative in region 2, which is, of course,
simply absurd because kinetic energies must always be positive (nothing in the
expression mv2 can be negative). Therefore, region 2 is classically forbidden to
an electron with E Ub.

Tunneling. However, because an electron is a matter wave, it actually has a
finite probability of leaking (or, better, tunneling) through the barrier and materi-
alizing on the other side. Once past the barrier, it again has its full mechanical
energy E as though nothing (strange or otherwise) has happened in the region
0  x L. Figure 38-17 shows the potential barrier and an approaching electron,
with an energy less than the barrier height.We are interested in the probability of
the electron appearing on the other side of the barrier. Thus, we want the trans-
mission coefficient T.

To find an expression for T we would in principle follow the procedure for
finding R for a potential step.We would solve Schrödinger’s equation for the gen-
eral solutions in each of three regions in Fig. 38-16.We would discard the region-3
solution for a wave traveling in the x direction (there is no electron source off
to the right).Then we would determine the coefficients in terms of the coefficient
A of the incident electrons by applying the boundary conditions—that is, by
matching the values and slopes of the wave functions at the two boundaries.
Finally, we would determine the relative probability density in region 3 in terms
of the incident probability density. However, because all this requires a lot of
mathematical manipulation, here we shall just examine the general results.

Figure 38-18 shows a plot of the probability densities in the three regions. The
oscillating curve to the left of the barrier (for x 0) is a combination of the inci-
dent matter wave and the reflected matter wave (which has a smaller amplitude
than the incident wave). The oscillations occur because these two waves, traveling
in opposite directions, interfere with each other, setting up a standing wave pattern.

Within the barrier (for 0 x L) the probability density decreases exponentially
with x.However,if L is small,the probability density is not quite zero at x L.

To the right of the barrier (for x L), the probability density plot describes a
transmitted (through the barrier) wave with low but constant amplitude. Thus,
the electron can be detected in this region but with a relatively small probability.
(Compare this part of the figure with Fig. 38-13.)

As we did with a step potential, we can assign a transmission coefficient T to
the incident matter wave and the barrier. This coefficient gives the probability
with which an approaching electron will be transmitted through the barrier—
that is, that tunneling will occur. As an example, if T 0.020, then of every 1000
electrons fired at the barrier, 20 (on average) will tunnel through it and 980 will be
reflected.The transmission coefficient T is approximately

T e 2bL, (38-38)

in which (38-39)

and e is the exponential function. Because of the exponential form of Eq. 38-38,
the value of T is very sensitive to the three variables on which it depends: particle
mass m, barrier thickness L, and energy difference Ub E. (Because we do not
include relativistic effects here, E does not include mass energy.)

b A
8 2m(Ub E)

h2 ,

1
2

x

Electron

Ub

L0

E

Energy

Classically, the electron
lacks the energy to pass
through the barrier region.

Figure 38-17 An energy diagram containing
two plots for the situation of Fig. 38-16:
(1) The electron’s mechanical energy E is
plotted when the electron is at any coordi-
nate x 0. (2) The electron’s electric po-
tential energy U is plotted as a function of
the electron’s position x, assuming that the
electron can reach any value of x. The
nonzero part of the plot (the potential
barrier) has height Ub and thickness L.

x
0 L

Probability
   (x)2ψdensity 

Figure 38-18 A plot of the probability density
|c |2 of the electron matter wave for the
situation of Fig. 38-17. The value of |c|2 is
nonzero to the right of the potential barrier.

x

x = 0 x = L

Vb < 0V = 0 V = 0

L

Can the electron pass
through the region of 
negative potential?

Figure 38-16 The elements of a narrow tube
in which an electron (the dot) approaches a
negative electric potential Vb in the region
x 0 to x L.
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Barrier tunneling finds many applications in technology, including the tunnel
diode, in which a flow of electrons produced by tunneling can be rapidly turned
on or off by electronically controlling the barrier height. The 1973 Nobel Prize in
physics was shared by three “tunnelers,” Leo Esaki (for tunneling in semiconduc-
tors), Ivar Giaever (for tunneling in superconductors), and Brian Josephson (for
the Josephson junction, a rapid quantum switching device based on tunneling).
The 1986 Nobel Prize was awarded to Gerd Binnig and Heinrich Rohrer for
development of the scanning tunneling microscope.

Checkpoint 5
Is the wavelength of the transmitted wave in Fig. 38-18 larger than, smaller than, or
the same as that of the incident wave?

y

z

x

Quartz
rods

Tip

Surface

Figure 38-19 The essence of a scanning tun-
neling microscope (STM). Three quartz
rods are used to scan a sharply pointed
conducting tip across the surface of inter-
est and to maintain a constant separation
between tip and surface. The tip thus
moves up and down to match the contours
of the surface, and a record of its move-
ment provides information for a computer
to create an image of the surface.

The Scanning Tunneling Microscope (STM)
The size of details that can be seen in an optical microscope is limited by the wave-
length of the light the microscope uses (about 300 nm for ultraviolet light).The size
of details that are required for images on the atomic scale is far smaller and thus
requires much smaller wavelengths. The waves used are electron matter waves,
but they do not scatter from the surface being examined the way waves do in an 
optical microscope. Instead, the images we see are created by electrons tunneling
through potential barriers at the tip of a scanning tunneling microscope (STM).

Figure 38-19 shows the heart of the scanning tunneling microscope. A fine
metallic tip, mounted at the intersection of three mutually perpendicular quartz
rods, is placed close to the surface to be examined. A small potential difference,
perhaps only 10 mV, is applied between tip and surface.

Crystalline quartz has an interesting property called piezoelectricity: When an
electric potential difference is applied across a sample of crystalline quartz, the di-
mensions of the sample change slightly. This property is used to change the length
of each of the three rods in Fig. 38-19, smoothly and by tiny amounts, so that the
tip can be scanned back and forth over the surface (in the x and y directions) and
also lowered or raised with respect to the surface (in the z direction).

The space between the surface and the tip forms a potential energy barrier,
much like that plotted in Fig. 38-17. If the tip is close enough to the surface,
electrons from the sample can tunnel through this barrier from the surface to the
tip, forming a tunneling current.

In operation, an electronic feedback arrangement adjusts the vertical
position of the tip to keep the tunneling current constant as the tip is scanned
over the surface. This means that the tip – surface separation also remains con-
stant during the scan. The output of the device is a video display of the varying
vertical position of the tip, hence of the surface contour, as a function of the tip
position in the xy plane.

An STM not only can provide an image of a static surface, it can also be used
to manipulate atoms and molecules on a surface, such as was done in forming
the quantum corral shown in Fig. 39-12 in the next chapter. In a process known as
lateral manipulation, the STM probe is initially brought down near a molecule,
close enough that the molecule is attracted to the probe without actually touch-
ing it. The probe is then moved across the background surface (such as copper),
dragging the molecule with it until the molecule is in the desired location. Then
the probe is backed up away from the molecule, weakening and then eliminating
the attractive force on the molecule. Although the work requires very fine con-
trol, a design can eventually be formed. In Fig. 39-12, an STM probe has been
used to move 48 iron atoms across a copper surface and into a circular corral
14 nm in diameter, in which electrons can be trapped.
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Light Quanta—Photons An electromagnetic wave (light) is
quantized, and its quanta are called photons. For a light wave of
frequency f and wavelength l, the energy E and momentum mag-
nitude p of a photon are

E hf (photon energy) (38-2)

and (photon momentum). (38-7)

Photoelectric Effect When light of high enough frequency
falls on a clean metal surface, electrons are emitted from the sur-
face by photon– electron interactions within the metal. The gov-
erning relation is

hf Kmax , (38-5)

in which hf is the photon energy, Kmax is the kinetic energy of the
most energetic emitted electrons, and is the work function of the
target material—that is, the minimum energy an electron must
have if it is to emerge from the surface of the target. If hf is less
than , electrons are not emitted.

p
hf
c

h

Review & Summary

Compton Shift When x rays are scattered by loosely bound
electrons in a target, some of the scattered x rays have a longer
wavelength than do the incident x rays. This Compton shift (in
wavelength) is given by

(38-11)

in which f is the angle at which the x rays are scattered.

Light Waves and Photons When light interacts with matter,
energy and momentum are transferred via photons. When light is
in transit, however, we interpret the light wave as a probability
wave, in which the probability (per unit time) that a photon can be
detected is proportional to , where Em is the amplitude of the
oscillating electric field of the light wave at the detector.

Ideal Blackbody Radiation As a measure of the emission
of thermal radiation by an ideal blackbody radiator, we define the
spectral radiancy S(l) in terms of the emitted intensity per unit
wavelength at a given wavelength l. For the Planck radiation law,

Em
2

h
mc

 (1 cos ),

and,from Eq. 38-38, the transmission coefficient is

T e 2bL e 10.0 45 10 6. (Answer)

Thus, of every million electrons that strike the barrier, about
45 will tunnel through it, each appearing on the other side
with its original total energy of 5.1 eV. (The transmission
through the barrier does not alter an electron’s energy or
any other property.)

(b) What is the approximate probability that a proton
with the same total energy of 5.1 eV will be transmitted
through the barrier, to appear (and be detectable) on the
other side of the barrier?

Reasoning: The transmission coefficient T (and thus the
probability of transmission) depends on the mass of the
particle. Indeed, because mass m is one of the factors in the
exponent of e in the equation for T, the probability of trans-
mission is very sensitive to the mass of the particle. This time,
the mass is that of a proton (1.67 10 27 kg), which is signif-
icantly greater than that of the electron in (a). By substitut-
ing the proton’s mass for the mass in (a) and then continuing
as we did there, we find that T 10 186. Thus, although the
probability that the proton will be transmitted is not exactly
zero, it is barely more than zero. For even more massive par-
ticles with the same total energy of 5.1 eV, the probability of
transmission is exponentially lower.

Sample Problem 38.06 Barrier tunneling by matter wave

Suppose that the electron in Fig. 38-17, having a total energy
E of 5.1 eV, approaches a barrier of height Ub 6.8 eV and
thickness L 750 pm.

(a) What is the approximate probability that the electron
will be transmitted through the barrier, to appear (and be
detectable) on the other side of the barrier?

KEY IDEA

The probability we seek is the transmission coefficient T as
given by Eq. 38-38 (T e 2bL), where

Calculations: The numerator of the fraction under the
square-root sign is

(8p2)(9.11 10 31 kg)(6.8 eV 5.1 eV)

(1.60 10 19 J/eV) 1.956 10 47 J kg.

Thus,

The (dimensionless) quantity 2bL is then

2bL (2)(6.67 10 9 m 1)(750 10 12 m) 10.0

b A
1.956 10 47 J kg
(6.63 10 34 J s)2 6.67 10 9 m 1.

b
A

8p 2m(Ub E)
h2 .

Additional examples, video, and practice available at WileyPLUS
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in which atomic oscillators produce the thermal radiation, we have

(38-14)

where h is the Planck constant, k is the Boltzmann constant, and T
is the temperature of the radiating surface. Wien’s law relates the
temperature T of a blackbody radiator and the wavelength lmax at
which the spectral radiancy is maximum:

lmaxT 2898 mm K. (38-15)

Matter Waves A moving particle such as an electron or a pro-
ton can be described as a matter wave; its wavelength (called the
de Broglie wavelength) is given by l h/p, where p is the magni-
tude of the particle’s momentum.

The Wave Function A matter wave is described by its wave
function (x, y, z, t), which can be separated into a space-
dependent part c(x, y, z) and a time-dependent part e ivt. For a
particle of mass m moving in the x direction with constant total en-
ergy E through a region in which its potential energy is U(x), c(x)
can be found by solving the simplified Schrödinger equation:

(38-19)

A matter wave, like a light wave, is a probability wave in the sense
that if a particle detector is inserted into the wave, the probability
that the detector will register a particle during any specified time in-
terval is proportional to |c|2, a quantity called the probability density.

For a free particle— that is, a particle for which U(x) 0—
moving in the x direction, |c |2 has a constant value for all positions
along the x axis.

d2c

dx2

8p 2m
h2  [E U(x)]c 0.

S(l)
2pc2h

l5

1
ehc/lkT 1

,

Heisenberg’s Uncertainty Principle The probabilistic
nature of quantum physics places an important limitation on de-
tecting a particle’s position and momentum. That is, it is not possi-
ble to measure the position and the momentum of a particle si-
multaneously with unlimited precision. The uncertainties in the
components of these quantities are given by

(38-28)

Potential Step This term defines a region where a particle’s
potential energy increases at the expense of its kinetic energy.
According to classical physics, if a particle’s initial kinetic energy
exceeds the potential energy, it should never be reflected by the re-
gion. However, according to quantum physics, there is a reflection
coefficient R that gives a finite probability of reflection.The proba-
bility of transmission is T  1 R.

Barrier Tunneling According to classical physics, an incident
particle will be reflected from a potential energy barrier whose
height is greater than the particle’s kinetic energy. According to
quantum physics, however, the particle has a finite probability
of tunneling through such a barrier, appearing on the other side
unchanged. The probability that a given particle of mass m and en-
ergy E will tunnel through a barrier of height Ub and thickness L is
given by the transmission coefficient T:

T e 2bL, (38-38)

where (38-39)b A
8 2m(Ub E)

h2 .

z pz .

y py

x px

p:r:

6 Let K be the kinetic energy that a sta-
tionary free electron gains when a photon
scatters from it. We can plot K versus the an-
gle f at which the photon scatters; see curve
1 in Fig. 38-21. If we switch the target to be a
stationary free proton, does the end point of
the graph shift (a) upward as suggested by
curve 2, (b) downward as suggested by curve
3, or (c) remain the same?

7 In a Compton-shift experiment, light (in
the x-ray range) is scattered in the forward
direction, at f 0 in Fig. 38-3. What
fraction of the light’s energy does the
electron acquire?

8 Compton scattering. Figure 38-22
gives the Compton shift l versus
scattering angle f for three different
stationary target particles. Rank the
particles according to their mass,
greatest first.

9 (a) If you double the kinetic energy of a nonrelativistic particle,
how does its de Broglie wavelength change? (b) What if you dou-
ble the speed of the particle?

1 Photon A has twice the energy of photon B. (a) Is the
momentum of A less than, equal to, or greater than that of B? (b) Is
the wavelength of A less than, equal to, or greater than that of B?

2 In the photoelectric effect (for a given target and a given fre-
quency of the incident light), which of these quantities, if any, de-
pend on the intensity of the incident light beam: (a) the maximum
kinetic energy of the electrons, (b) the maximum photoelectric cur-
rent, (c) the stopping potential, (d) the cutoff frequency?

3 According to the figure for Checkpoint 2, is the maximum
kinetic energy of the ejected electrons greater for a target made of
sodium or of potassium for a given frequency of incident light?

4 Photoelectric effect: Figure 38-20
gives the stopping voltage V versus
the wavelength l of light for three
different materials. Rank the mate-
rials according to their work func-
tion, greatest first.

5 A metal plate is illuminated
with light of a certain frequency.
Which of the following determine whether or not electrons are
ejected: (a) the intensity of the light, (b) how long the plate is ex-
posed to the light, (c) the thermal conductivity of the plate, (d) the
area of the plate, (e) the material of which the plate is made?
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